Protect Your Patients and Staff

From Drug-Resistant Infections with Fast PCR
\rightarrow Improve Infection Control and
Antimicrobial Stewardship with
Cepheid's Portfolio of Testing Solutions

\downarrow

Antimicrobial Resistance (AMR)

The Pandemic Behind The Pandemic

AMR is growing rapidly, with superbugs threatening our ability to treat common infectious diseases. Fast and accurate diagnostics can greatly improve time to result, allowing clinicians and infection prevention professionals to quickly identify, isolate and appropriately manage patients colonized or infected with drug-resistant bacteria, helping to prevent the spread of resistance in patients and staff alike.

THE PROBLEM

${ }^{1}$ Why AMR Matters:

2.8 Million
infections annually ${ }^{1}$

35,000
deaths annually in the U.S. ${ }^{2}$

4.6 Billion
in extra healthcare costs ${ }^{3}$

${ }^{2}$ Relationship to Healthcare-Associated Infections (HAIs) ${ }^{4.5}$

HAls are frequently caused by drug-resistant bacteria. HAls can:

- Prolong length of stay
- Cause large outbreaks
- Worsen patient outcomes

1 in 3
bacteria associated with HAls are resistant to antibiotics ${ }^{4}$

4.5 Million annual number of patients with at least one HAl^{5}

1 in 15
number of patients on any given day with at least one HAI ${ }^{4}$

${ }^{3}$ Everyone is at Risk

Some, however, are high-risk and disproportionally impacted:

Patients undergoing cancer therapy

Patients with weakened immune systems

Patients undergoing dialysis

Patients undergoing complex surgery

[^0]
Infectious Diseases of Concern

Bacteria associated with resistance are spreading

Highly transmissible microorganisms such as Clostridioides difficile (C. difficile) and carbapenem-resistant bacteria can quickly result in difficult-to-manage outbreaks, and can be harmful to patient outcomes, disruptive to clinical service delivery and costly. ${ }^{1,2}$

C. difficile

Leading cause of antibiotic-associated diarrhea ${ }^{3}$

Methicillin-resistant Staphylococcus aureus (MRSA)

Prominent cause of HAls ${ }^{4}$

Drug-resistant Tuberculosis (TB)
Frequent cause of death worldwide ${ }^{6}$

Carbapenem-resistant Bacteria
Significant threat to antibiotics of last resort²

Vancomycin-resistant Bacteria Has few or no treatment options ${ }^{5}$

Group B Streptococcus (GBS)
Leading cause of early onset neonatal sepsis ${ }^{7}$

Group A Streptococcus
Most common bacterial cause of sore throats ${ }^{5}$

[^1]

COVID-19 Impact on AMR and HAls

Viruses can contribute to the AMR threat

The COVID-19 pandemic has elevated concerns about AMR, with significant increases in prescriptions for antibiotics, hospitalizations and drug-resistant bacteria transmissions. ${ }^{1}$ Patients admitted to hospital with suspected COVID-19 are frequently empirically prescribed with antibiotics; however, many do not have a bacterial co-infection, thereby potentially propagating more resistance. ${ }^{3}$

Increased usage of broad-spectrum antibiotics ${ }^{4}$

Increase in drug-resistant outbreaks in COVID-19 ICUs ${ }^{5,6}$

[^2]
Preventing Infections and the Spread of Resistance

THE SOLUTION

1 Fast \& Accurate PCR Answers in
 ~1 hour* with Cepheid's GeneXpert ${ }^{\circledR}$ system

On-demand identification with the GeneXpert system's fast PCR tests help healthcare professionals reduce onward transmission of resistant bacteria throughout the patient pathway, and optimize appropriate therapy management, helping prevent the spread of pathogens and resistance. ${ }^{1,2}$ Explore fast and accurate testing for:

With Xpert ${ }^{\circ}$ C. difficile/Epi you can:

- Improve antibiotic stewardship
- Start contact precautions and effective treatment earlier
- Help identify and prevent outbreaks

With Xpert ${ }^{\oplus}$ Carba-R you can:

- Identify and isolate positive patients
- Implement infection control protocols that can prevent outbreaks in your institution
- Help direct therapeutic strategy from pure colonies

With $\mathrm{Xpert}{ }^{\oplus}$ Xpress Strep A you can:

- Facilitate effective patient management
- Accurately diagnose GAS
- Support antimicrobial stewardship which may reduce the amount of patients inappropriately prescribed antibiotics

With Xpert ${ }^{\oplus}$ MTB/RIF you can:

- Quickly identify infectious patients
- Guide the decision making process for an earlier initiation of appropriate treatment
- Detect drug resistance in infections accurately

With Xpert ${ }^{\circ}$ Xpress CoV-2 plus^ you can:

- Offer healthcare providers lab-quality results in a test that can be performed at the point of care
- Support clinicians with broader coverage for SARS-CoV-2 variants with a threegene design

With Xpert ${ }^{\oplus}$ Xpress CoV-2/Flu/RSV plus^

 you can:- Accurately detect and differentiate SARS-CoV-2, Flu A, Flu B, and RSV
- Standardization of results between the central lab and near-patient testing sites

${ }^{2}$ Enable High-Quality Answers for Anyone, Anywhere, Anytime*

Now more than ever, immediate access to fast and accurate answers is essential for improving infection control and patient management. Cepheid's GeneXpert ${ }^{\circledR}$ system provides on-demand PCR answers within and across sites of care, for optimized management of patients and infectious diseases everywhere, 24/7.

Broad Infectious Disease Coverage

Through the most easy-to-use PCR menu

With testing that spans $20+$ disease states, Cepheid is the ideal diagnostics partner for improved clinical decision making and patient care.

Coverage, plus
Accuracy, plus
Peace of mind
That's the PCRplus advantage.
From Cepheid.

Respiratory
Diseases

Combined and stand-alone tests for:
Influenza
Respiratory syncytial virus (RSV)

MRSA screening
MRSA infection
C. difficile-associated disease

Enterovirus-mediated meningitis

Healthcare
Associated
Infections \& Other
Infectious Diseases

TB \&
Emerging
Infectious Diseases

Women's
\& Sexual Health

Chlamydia
Gonorrhea

COVID-19
Group A Streptococcus

Vancomycin-resistant bacteria
Carbapenem-resistant bacteria
Norovirus

Tuberculosis
Rifampicin resistance
Ebola virus

Trichomonas
Group B Streptococcus

Oncology
\& Genetics

Chronic Myeloid Leukemia
BCR-ABL monitoring

Coagulation
Factor II and Factor V Leiden

Visit us at www.cepheid.com
to explore Cepheid's full AMR and infectious disease solutions

US-IVD. In Vitro Diagnostic Medical Device. May not be available in all countries.

[^0]: 1 Centers for Disease Control and Prevention: Antibiotic Resistance Threats in the United States, 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed April 18, 2022.
 2 World Health Organization: Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed April 18, 2022.
 3 Centers for Disease Control and Prevention: CDC Study Shows National Healthcare Costs from AR Infections Exceed $\$ 4.6$ Billion. https://www.cdc.gov/ncezid/what-we-do/partnership-in-action/healthcare-costs-associated-with-ar-infections.html. Accessed April 18, 2022.
 4 MedTech Europe. 2014. Healthcare-Associated Infections Brochure. Accessed Feb 2021. https://www.medtecheurope.org/resource-library/hai-brochure/
 5 ECDC. 2018. Healthcare-Associated Infections - A Threat to Patient Safety in Europe. Accessed Feb 2021.
 https://www.ecdc.europa.eu/en/publications-data/infographichealthcare-associated-infections-threat-patient-safety-europe
 6 CDC. 2019. Antibiotic Resistance Threats in the United States 2019. Accessed Feb 2021. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

[^1]: van Beurden Y, et al. Cost analysis of an outbreak of Clostridium difficile infection ribotype 027 in a Dutch tertiary care centre. J Hosp Infect. 2017 Apr;95(4):421-425 Patel, B, et al. Carbapenemase-producing Enterobacterales: a challenge for healthcare now and for the next decade. IPIP. 2020 Sep;2(3):100089.
 Guery B, et al. Clostridioides difficile: diagnosis and treatments. BMJ. 2019 Aug;366:4609.
 Hübner C, et al. Impact of different diagnostic technologies for MRSA admission screening in hospitals - a decision tree analysis. Antimicrob Resist Infect Control. 2015 Dec;4(50), CDC. 2019. Antibiotic Resistance Threats in the United States 2019. Accessed Feb 2021. https://www.cdc.gov/drugresistance/pdf/ threats-report/2019-ar-threats-report-508.pdf WHO. Global Tuberculosis Report 2019. Accessed Feb 2021. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-report-2019

[^2]: 1 Centers for Disease Control and Prevention. (2022, February 25). Covid-19 \& Antibiotic resistance. Centers for Disease Control and Prevention. Retrieved July 21, 2022, from https://www.cdc.gov/ drugresistance/covid19.html\#anchor_1656421934582
 2 Pritchard M, et al. International Severe Acute Respiratory and Emerging Infections Consortium, COVID-19 Report: 8 June 2020. medRxiv. Accessed Feb 2021. https://www.researchgate.net/ publication/343217999_ISARIC_COVID-19_Clinical_Data_Report_8_June_2020
 3 Hsu, J. How covid-19 is accelerating the threat of antimicrobial resistance. BMJ. 2020 May;369:m1983.
 4 Abelenda-Alonso G, et al. Antibiotic prescription during the COVID-19 pandemic: a biphasic pattern. Infect Control Hosp Epidemiol. 2020 Nov;41(11):1371-1372
 5 Arcari G, et al. Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital. Int J Antimicrob Agents. 2021 Jan;57(1):106245.
 6 Kampmeier S, et al. A nosocomial cluster of vancomycin resistant Enterococci among COVID-19 patients in an intensive care unit. Antimicrob Resist Infect Control. 2020;9(1):1540820-8.

